• 26 November 2019

    Energy from the Oceans

    By Gianmaria Sannino – Senior Researcher at ENEA Gianmaria Sannino opened his speech during ReThink – Circular Ocean Forum in Genoa, with a brief and current introduction concerning the correlation between climate change and sea-level rise, explaining how the oceans absorb heat and they expand by increasing their volume. In addition to melting glaciers, in fact, the oceans’ temperature increase, is the second reason that causes the raising of the level, which is among the causes of the disaster that took place in November in Venice. The sea can also be exploited as an intelligent energy source, Sannino showed a quote by Joseph Conrad from the book Typhoon, which says “… he had never seen the immeasurable force and excessive anger, the anger that passes and runs out without ever subsiding – the anger and fury of the irritated sea”, which turns out to be a fictionalized definition of what marine renewable energy is. Even Victor Hugo already in 1874, with a quote taken from the novel “Novantatrè”, emphasizes how the sea is a source of energy that the earth should make use of: “Think of the movement of the waves, the ebb and flow, the coming and going of the tides. What is the ocean? a huge lost force. How stupid the earth is, not to use the ocean! “ The global marine energy potential can be a very powerful resource, it is estimated that the amount of marine energy we can extract is equal to 1,200 TWh / year, while the global wave is estimated to be 29,500 TWh / year, these data are surprising if we consider that the current global electricity demand is 25,600 TWh / year. It would be easy to ask why it is not exploited, the first reason is that this energy is not distributed...
  • 20 November 2019

    Plastic offset is here

    Plastic offset is here. Here’s how to do it right by Peter Wang Hjemdahl (Co-Founder, rePurpose Global) A new paradigm is entering the environmental zeitgeist, and that paradigm is plastic offset. So what is it really, and how could it stem the global tide of plastic pollution? Put simply, for every dollar contributed by a polluter, a certain amount of plastic waste would be intercepted from the environment on your behalf as an individual or a company.  All across the developing world, waste management social enterprises have popped up to provide ethical & efficient solutions to our plastic epidemic, yet they are often underfunded and left unable to scale. Inspired by carbon credit, plastic offset is a transformative way of funding these innovations to accelerate our transition towards a circular economy.  Just like carbon, there are as many ways to do plastic offset wrong as ways to do it right. With the complex relationship between consumer responsibility and producer accountability, generating a truly meaningful impact is challenging yet entirely possible. From the landfills and alleyways of Mumbai to corporate headquarters in New York, we spent years understanding both local needs and the global systems that govern our waste. Here are 3 principles we have distilled on how to do plastic offset, right. Principle 1: Hit the problem where it hurts Anywhere in the developing world, if you pay attention to the kinds of plastic that are actually littering our streets, beaches, and landfills, you will notice a trend – it’s dominated by low-value plastic like to-go containers, candy wrappers, and plastic bags.  These materials are classified as low-value plastic because they are extremely difficult to recycle. Shanghai, Cairo, New Delhi, Nairobi, Jakarta – a vibrant informal recycling industry do exists in cities worldwide and employs tens of millions of workers who...
  • 29 October 2019

    Orange Fiber

    By Enrica Arena – Orange Fiber Co-founder Enrica Arena presents Orange Fiber, a company that produces a sustainable fabric similar to silk from citrus fruits. The material was born as an alternative product to classic cellulose, so the production is cut down over 70 million trees all. The developed product can be printed, colored and packaged, so brands don’t have to modify their suppliers and can be woven together with all other materials. The activity was born from the idea of ​​recovering what remains at the end of the industrial pressing of the orange for the production of the juice, which is considered a processing waste and which involves great costs for the companies in the sector and for the environment. In fact, 60% of the original weight of the fruit is considered waste but through a series of research carried out in collaboration with a university professor in the chemistry department of the Politecnico di Milano, it is currently possible to examine and patent an innovative process to transform the by-product of citrus fruits in a new resource capable of revolutionizing fashion in a sustainable and protected way to the resolution of problems related to the disposal. In the fashion field, 60% of the garments are made with materials deriving from the transformation of oil, and this not only causes environmental problems, but also links the value of materials to the oscillation of oil prices, by influencing the possibility that a collection is profitable or not for a brand. Furthermore, 25% of the products in the sector come from the cotton, a material whose production requires high quantities of water and soil, and which is often produced using pesticides. Organic cotton, on the other hand, has the disadvantage of needing more soil because it uses less pesticides but has...
  • 23 October 2019

    The energy of the Circular Economy

    By Giovanni Tula Giovanni Tula started his speech by introducing the focus of his presentation: circular projects linked to the energy world. The goal is to understand the status of renewable energies and their dissemination at the global level, by considering the 4 macro areas: storage, efficiency, the automation, and digitalization. The starting point is the comparison of the estimates regarding the dissemination of the renewable energies developed by the World Energy Agency in 2008 and 2017. As you can see from the image above, the estimates have more than doubled, the reason is that in 2017, with circa 13 years to spare, the estimate of the 2030 has already been reached, now the expectancy is to reach 4.718 GW installed in 2030. Actually, the estimates recently made could be underestimated because the renewable energies are becoming highly competitive thank to a strong reduction of the cost of production. For example, in the solar energy field, there has been an 83% reduction in the costs of the photovoltaic panels starting from 2010 till today. In the previous image it is highlighted the evolution of renewable energy sources compared to the fossil fuel, where it is estimated that the renewable could reach 64% of the overall energy resources. The storage Among the enabling elements of this revolution there is the “storage theme”. The batteries are essential to this evolution per 3 functions: Stabilization of the electricity grid Reduction of the imbalances on the generation side Offer of the energy in time of need on the consumer side The evolution of the lithium batteries in the last years has been important such that it has gone from some MW of power and storage of some minutes to a power of hundreds MW that can last for hours. The one that is impossible...
  • 14 October 2019

    An urgent opportunity

    By Francesco Castellano Francesco Castellano started his speech by explaining the reasons that drove him to create Tondo and ReThink. It all started from a beach, a place where he loved swimming, that place changed dramatically during the years because of the plastic and the waste. Trash created by human beings, which denotes, in part, the failure of the current system, a system that doesn’t take into account the impact of our actions on the environment. ReThink – Circular Economy Forum Without any doubt, we need to rethink our economic system, to reconsider its elements and the path we are following. The necessity to rethink led to the birth of “ReThink – Circular Economy Forum”, with the purpose to question some of the elements of our economic and industrial system and to show concrete applications of some interesting trends in the Circular Economy. Problems To understand the importance of the Circular Economy we need to show firstly the problems that humanity has to face at this moment. One of the most important issues is global warming caused by the CO2 issued for energetic production, for industrial activities and for transports. In particular, Castellano reported, that according to the last IPCC (Intergovernmental Panel on Climate Change)’s study, dated October 2018, to avoid the increase of the global temperature over 1.5°C (temperature that is considered the maximum limit to avoid effects that could be catastrophic on the global ecosystem and for the humanity in general), we have circa 12 years to reduce the 50% of the CO2 emissions and circa 30 years to delete them completely. Otherwise, some effects, that are already present, will expand more and more, with a devastating impact of drought, fire and flood. These events have already caused damages for 320 billion dollars in 2017 (https://newclimateeconomy.report/2018/). In addition,...
  • 8 October 2019

    Understand and Regenerate

    By Barbara Pollini Understand Barbara Pollini started her presentation by mentioning the contemporary philosopher Timothy Morton who coined the term “hyperobjects” to explain those interconnected phenomenons which have a wide vastness in time and space and that are incomprehensible for us. Climate change is one of them. In this perspective, designer’s ability to value material is important for the environmental impact of a product, also, in the complex world, the sustainability is not a steady-state, once it is reached you can’t keep it, it is a  dynamic threshold based on the continuous research. Designers, very often, are focused on some aspects of the project, and they ignore the life-cycle of the products and their materials; there aren’t many Italian universities that push the students to think about these issues and not many corporates of materials that explain information about the life-cycle of materials. Some designers adopt a critical approach and they reinvent some materials in order to find solutions that the market is not able to propose or in order to show a walkable path or an unresolved problem. Among these examples there is “Studio Swine” which created a stool made by plastic recovered at sea. It’s not part of a series production, but it wants to stimulate a critical thinking on an environment issue through the story of a material. At NABA, during Pollini’s lessons, there have been a lot of trials on DIY materials, that are organic or “made in waste”. Some of the projects are virtuous, such as “Peel Saver”, packaging for the street food made by potato’s peel, created by the students: Simone Caronni, Paolo Stefano Gentile and Pietro Gaeli. Also at Politecnico di Milano there are a lot of studies on DIY materials, Pollini is a tutor of the Metaprogetto Lab that took part at the...
  • 30 September 2019

    Blockchain, AI and Sharing

    by Lisanne Huizing Due to the urbanization phenomenon, more people are going to move to cities. This will lead to more congestion of traffic, more pollution, and a necessity for more resources in cities among others. We will need more of everything than we have right now, in order to generate food and products. Resources are not endless, and they will become scarce in the future. “Smart Cities” have to solve this problem of rapid movement of goods, people and capital. By integrating technology, both cities’ and citizens’ behaviors can be understood. People can become involved and empowered by giving control over resources to more stakeholders by combining circular and smart technologies. It will give citizens the possibility to more actively govern their own resources at a lower geographical scale. Adaptive systems will be very beneficial for our future needs. Sharing & Circular Economy  With the Sharing Economy, a new phenomenon has arisen and it provides opportunities to redesign urban planning and access to locally shared resources. This will create a shift from possession-based, to a service-based economy. In order to use less resources in a growing and more demanding society, it will become necessary to make better use of the capacity of resources that is already existing.  When you look at a car that you only use in the weekends, for example, by sharing this with other people, it can also be used during the week. Once the car is optimally used and it comes to the end of its lifecycle, you can move towards the next step; circularity.  Although the Sharing Economy and Circular Economy are two different elements, they are connected. Because where the Sharing Economy ends, the Circular Economy begins. Together, they influence the taking shape of practices and optimization of processes. Cities can play a big role...
  • 23 September 2019

    New trends for circular materials

    Marco Cappellini’s speech is focused on three themes: the production of new materials and their end-life management, the transition to “products as services” and the measurement of the circularity. Trends in corporates According to a report by OCSE, it is estimated that the number of used resources will double by 2060. In particular, this fact involves specific sectors, as the packaging and the fashion ones, that are promising the recycling and the creation of biomaterials starting from 2020/2030. However, there are no doubts about the possibilities of recycling, but there could be problems about who carry out the process: some corporates produce recyclable products, but they are not recycled. For this reason, it exists the idea that the circular economy is uneconomic: but this is not the truth because multiple international cases prove the contrary. New business realities are proposing new custom materials. Many of these start from the principle of being “biomaterials”, material that are easily biodegradable and, or, compostable; there are other recyclable materials that are recyclable only through very specific processes and methods. This is very worrying because, it is possible to order recyclable products, but it is very hard for consumers to manage the end-life of the products. We can say that corporates have to play a more important role in managing the recycling of materials, for example, by creating a clause that specifies the end-life of the products in the patents. Matrec’s example is about a material made of recycled rubber by PFU, that is a very useful material, but it is undervalued. The input is to add value to the material: Matrec worked for new solutions that can improve sound and heat insulation performance, but they are also working on three-dimensionality. The aim is to increase the value of the materials on the market...
  • 14 September 2019

    “Old” and “New” Circular Economy

    This article is based on Roberto Zoboli’s speech during “Re-Think Forum”. Roberto Zoboli, during “ReThink Circular Economy Forum”, introduced some key elements to understand the Circular Economy, by distinguishing between “Old” and “New” Circular Economy. Some of the elements described in this article are coming from studies developed by the Inter-University research center called “SEEDS” – Sustainability Environmental Economics and Dynamics Studies – of which Catholic University is a member. Catholic University is also a partner of the European Topic Centre on Waste and Materials in a Green Economy, that develops studies and researches for the European Environment Agency (EEA). In particular, the Catholic University has contributed to the drafting of three reports for the EEA which include both technical and informative aspects: “Circular Economy in Europe, Developing the knowledge base”  “Circular by design, Products in the Circular Economy”  “The Circular Economy and the bioeconomy, Partners in sustainability”  In 2019 the fourth report of the EEA on the Circular Economy will be published. New behavioral patterns The idea of implementing the Circular Economy can force and orient the whole economic system towards new behavioral models. That means to move towards what the community like and what the community wants to prevail, from a sustainable, environmental and social point of view.  The OECD’s conceptual scheme is useful to frame the Circular Economy, it underlines three different levels of possible actions: The closure of the resource flows: best known as the “recovery and recycling process”, where the waste system has an important role, but it also includes the re-use and re-manufacturing of products; The slowdown of the use cycle: the elongation of the lifespan of products and the contrast of the fast aging, compared to what it is logical by the technical point of view and acceptable at the social level; Shrinking...
  • 9 September 2019

    Built environment

    This article is based on Guglielmo Carra’s speech during “Re-Think Forum”. Guglielmo Carra’s speech opened with the comparison of two pictures that portray the city of Shangai, one of them was taken in the mid-1990s and the other one only a few years ago. The difference is clear: the development of the city in the past 20 years was impressive and this trend is common in all urban contexts in Asia, Africa, South, Centre America and also in Europe. It is estimated that by 2050, about 70% of the global population will live inside these cities. It means that every week, a city of 1,6 million people is built. Cities are a place for people, but also a place where resources, coming from outside, are transported to be consumed with a linear approach. This change will impact the construction sector – that, at the current state, consumes 60% of resources and emit 40% of CO2. Improvements are possible since the constructions sector is the least automated ever, so it is also the least efficient, whose productivity of one hour is still equivalent to the one in 1946. Circular Economy can be the solution, in order to enhance the processes and the resources used, not only in the design of the utilization of the building but also by defining what will happen in the future to those materials and resources used for the construction. The 4 areas by Arup Carra presents some projects by Arup that revolve around 4 thematic areas: The regeneration of natural capital, which consists of transforming the city from a place that consumes resources, to a place where resources are produced and regenerated; The creation of open and shared processes by developing and implementing collaborative processes in addition to the promotion of actions and production chain processes....
  • 9 June 2019

    Cleantech

    In the common imagination, technology and environment can be seen as in contrast. On the one hand, the manufacturing industry with its energy-intensive production processes, which consume enormous amounts of resources, introduces toxic substances in exchange for air. On the other hand, the environment is seen as an element to be preserved and defended. The term technology itself, however, indicates the most efficient and economical use of available goods and tools. This is why it is not an oxymoron to talk about Cleantech, clean technologies, although it can be complex to define its fields of action in an exact manner. Cleantech: clean technology without borders The concept of Cleantech is difficult to define. If it is true that in a theoretical level it is a rather simple concept when you go into it, the possibilities become practically endless. In Cleantech, we can include all the innovations, regarding processes and products, that limit or completely eliminate the negative environmental impact of human action. We can talk about Cleantech when we are faced with technologies that deal with: • Collection and recycle of waste • Production of electricity from renewable sources • Rationalization of transport • Optimization of energy consumption • Reduction of packaging volumes • Limitation of resources used in the production process • Cutting emissions of pollutants into the atmosphere. In a Circular Economy perspective, Cleantech can, therefore, become any technology that limits energy; optimize their production and consumption processes; prevents waste eventually produced. In our analysis, we will focus on technologies that provide innovative energy production and storage. Artificial intelligence Forbes has dedicated to the world of new technologies for the creation of clean energy an article on the possible trends for 2019. Among the 6 trends that could emerge this year, the newspaper cites Artificial Intelligence, now pervasive...

Biomaterials

Plastic is probably humanity’s biggest failure. Even today hundreds of millions of tons are produced, despite the risks it entails, for humans and ecosystems. The solution is biomaterials, substances obtained from organic elements (from fruit to plants, to mushrooms), biodegradable and potentially zero-impact.

Let’s find out why today it is increasingly necessary to identify these types of solution and why some companies have already focused their core business on biomaterials.

The huge problem of plastics

In spite of good intentions and proclamations, the creation of plastic does not seem to stop globally. Historically, the production of this material has established itself in the first decades of the twentieth century and has not stopped growing until at least 2010. Estimates tell us that plastic production has grown from 1.5 million tons, globally, from the 1930s to the 280 million tons in 2010, with a 38% growth in the last 10 years of the reference period. Statista also reports that in 2017 the figure has risen further to 348 million tons.

According to the portal, the greatest growth in recent years has occurred in non-European countries: in 2002 global production was in fact 200 million tons (almost half compared to today), but Europe has contributed to this growth “only” for 8 million tons.

The quantity of materials deriving from the oil that we put into the environment, therefore, becomes abnormal. According to UNEP, the UN environmental program, 8 million tons of plastic waste ends up in the oceans every year, an enormous amount of material that will remain there for decades, if not centuries. A plastic bag takes 20 years to degrade, while bottles and cutlery can take up to a thousand years.

In reality, the problem is even more serious than it seems: in nature, nothing is created and nothing is destroyed. In fact, the plastic objects that end up in the sea do not fade but turn into microplastic. These are very small fragments, which have a diameter between 330 micrometers and 5 millimeters, and therefore even more easily end up in the stomach of fish and other animals that feed on fish.

According to a 2017 report quoted by FAO, microplastics were recorded in 12 of the 25 most common marine fish species. National Geographic cites some experiments that show how microplastics are capable of damaging aquatic creatures. Not just fish, but also turtles and birds. These substances block their digestive channels, reduce the need to eat, alter the normal dietary habits of the fauna, reduce the growth of the specimens that ingest them, as well as their reproductive capacity.

Biomaterials, the choice of the future

In reality, plastic, however enormous, is just one of the problems that affect materials. The search for more sustainable solutions, for example, also concerns construction: the cement industry, to mention just one case, is responsible for the release of 2.8 billion tons of CO2 into the atmosphere each year. Similar problems are also felt in the fashion industry.

The solutions are biomaterials or organic materials. The term should not be confused with the type of chemical compounds that are used for the creation of prostheses and in other medical applications: in this context, in fact, synthetic materials are also meant.

For industrial applications, biomaterials are instead a type of organic substances, which can effectively replace compounds commonly used such as plastic or cement, and which meet the criteria of the circular economy. 

Some examples of this type of material, already marketed, will help us better understand what it is.

5 examples of biomaterials on the market

Orange Fiber

We talked about the unsustainability of the fashion market, which pollutes the waters (with the synthetic substances used) and disperses enormous quantities of CO2 into the atmosphere. One example is cotton: to produce one kilogram, 10 thousand liters of water and about three kilos of polluting chemicals are needed.

To respond to this problem, several companies have arisen offering organic fabrics or recycled materials. Among these, the Italian Orange Fiber, which uses the by-products of the citrus market to make their own fabrics. In 2011, Adriana Santanocito has the idea of ​​exploiting a large amount of waste from the citrus sector of Sicily, to obtain a material suitable for creating clothes.

The idea becomes concrete with the support of the Milan Polytechnic and the collaboration of her friend Enrica Arena. In 2013 she patented the process and two years later she created the first pilot plant: Orange Fiber was born.

In detail, the Sicilian citrus fruit waste is processed into cellulose in Trinacria before being shipped to Spain. Here, the cellulose becomes yarn. The resulting product returns to Italy, to Como, where it is woven with silk and cotton, obtaining a satin and poplin. However, the company also produces a 100% Orange Fiber, light and similar to viscose.

The fabrics of the Sicilian company are now used by some of the most famous fashion brands in the world: recently, for example, Ferragamo launched the Responsible line precisely using the innovative material of Orange Fiber.

Luisa Cabiddu

From Sicily to Sardinia with there are Luisa Cabiddu’s innovative building biomaterials. With her company, Cabiddu builds “organic” houses, using highly innovative materials: the Senatore Capelli organic wheat straw and clay are directly produced by the company (and constitute about 90% of the materials used by Cabiddu), while the wood and lime come from a short and controlled supply chain. The materials used to reduce waste production to the minimum while cutting the necessary energy costs. Cabiddu produces its own houses in straw, taking care of the whole process, from design to construction, but also realizes straw and clay bricks that she sells to third parties engaged in green building.

Ecovative and Mogu

Among the most interesting branches in the world of biomaterials are companies that exploit the great properties of mushrooms. Ecovative, in particular, exploits the mycelium, the “body” of the fungus, consisting of filaments called hyphae.

Ecovative is a New York-based company that created the Mycelium Biofabrication PlatformTM, developing a series of sustainable materials, biomaterials with different industrial and consumer applications.

Ecovative is for example known for having created a particular packaging for IKEA, based precisely on the mycelium, with zero environmental impact. DELL also used the same type of product for its packages.

However, the US company is also a sort of research laboratory, which investigates all the possible applications of biomaterials derived from fungi. For example, today it is conducting an experiment to create “synthetic meat”, aimed, one day, at building a cleaner food industry.

Also in Italy, there are companies dedicated to innovation in the field of organic materials derived from mushrooms. An example is MOGU, which is also dedicated to the development of mycelium-based technologies, to obtain materials that are not only sustainable but also with higher performance than those currently on the market.

MOGU also does not confine its production to a specific sector but focuses on projects with different destinations. Today the company mainly markets biomaterials for construction: flooring, thermal insulation panels, sound absorption modules, and so on. The company is currently in the research phase for faux leather, made with limited amounts of resources and without waste.

NU Green

Wood is not always a sustainable choice for construction. In fact, there are products on the market, such as chipboard, where in reality the various fragments of wood are linked together by formaldehyde, a flammable substance that can cause irritation to the respiratory tract and potential carcinogenic effects.

To offer a more sustainable choice to consumers, NU Green has created a new plywood, called “Uniboard”. The panel is made of 100% recycled or recovered wood fibers. In particular, the company uses renewable fibers such as corn and hop stalks and does not use formaldehyde in the production process. This means that it uses “waste” from other agricultural productions, without resorting to the destruction of existing forests and forests, nor to the cultivation of trees for this purpose. This results in a reduction of carbon dioxide emissions in the environment, as in lower exploitation of the land.

Hempcrete

Hempcrete is a particular material derived from industrial hemp (the one without psychotropic effects, so to speak). Its name derives from the English hemp, precisely hemp, and concrete, cement. This biomaterial consists of a mixture of hemp, lime, and water.

Its application at the industrial level has not been yet implemented on a large scale (also due to the legislation of several countries, which prohibits the cultivation of hemp). However, there are some interesting experiments. Designer Anthony Brenner, for example, built the first hempcrete house in 2010, in the United States. In addition to using materials with low environmental impact, the house built with this organic material has low levels of energy consumption and a reduced cost of realization.

The main characteristic of hempcrete is that it is a carbon-negative material. This means that in its production, application and use phase, it “imprisons” more carbon dioxide than it is necessary to put into the atmosphere.

This happens because the hemp stem, during its different growth phases, attracts a quantity of carbon dioxide equal to twice its own weight. Moreover, once implemented in homes and other buildings, the hempcrete continues to sequester small amounts of CO2 from the surrounding environment.

Social Share Buttons and Icons powered by Ultimatelysocial